Parallelization of the Local Threshold and Boolean Function Based Edge Detection Algorithm Using CUDA
نویسندگان
چکیده
In this paper we present a parallelized algorithm for edge detection for gray scale images. The chosen method is the local threshold and boolean function based edge detection. This method differs from common edge detectors in the use of bit map patterns instead of analyzing gradient changes in the image for edge recognition. The parallelization is implemented on the GPU, exploiting its multithreaded, many-core processor power using NVIDIA’s CUDA (Compute Unified Device Architecture). We show in our tests the significant speedup of parallelized algorithm compared to the sequential one. Key–Words: Image processing, Edge detection, Parallel algorithms, CUDA technology
منابع مشابه
An approach to Improve Particle Swarm Optimization Algorithm Using CUDA
The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...
متن کاملParallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach
There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...
متن کاملParallelizing and Optimizing LIP-Canny Using NVIDIA CUDA
The Canny algorithm is a well known edge detector that is widely used in the previous processing stages in several algorithms related to computer vision. An alternative, the LIP-Canny algorithm, is based on a robust mathematical model closer to the human vision system, obtaining better results in terms of edge detection. In this work we describe LIP-Canny algorithm under the perspective from it...
متن کاملEfficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems
Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...
متن کاملA FUZZY DIFFERENCE BASED EDGE DETECTOR
In this paper, a new algorithm for edge detection based on fuzzyconcept is suggested. The proposed approach defines dynamic membershipfunctions for different groups of pixels in a 3 by 3 neighborhood of the centralpixel. Then, fuzzy distance and -cut theory are applied to detect the edgemap by following a simple heuristic thresholding rule to produce a thin edgeimage. A large number of experime...
متن کامل